Fibring Labelled Deduction Systems

نویسندگان

  • João Rasga
  • Amílcar Sernadas
  • Cristina Sernadas
  • Luca Viganò
چکیده

We give a categorial characterization of how labelled deduction systems for logics with a propositional basis behave under unconstrained fibring and under fibring that is constrained by symbol sharing. At the semantic level, we introduce a general semantics for our systems and then give a categorial characterization of fibring of models. Based on this, we establish the conditions under which our systems are sound and complete with respect to the general semantics for the corresponding logics, and establish requirements on logics and systems so that completeness is preserved by both forms of fibring.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Labelled Deduction over Algebras of Truth-Values

We introduce a framework for presenting non-classical logics in a modular and uniform way as labelled natural deduction systems. The use of algebras of truth-values as the labelling algebras of our systems allows us to give generalized systems for multiple-valued logics. More specifically, our framework generalizes previous work where labels represent worlds in the underlying Kripke structure: ...

متن کامل

Truth-values as Labels: A General Recipe for Labelled Deduction

We introduce a general recipe for presenting non-classical logics in a modular and uniform way as labelled deduction systems. Our recipe is based on a labelling mechanism where labels are general entities that are present, in one way or another, in all logics, namely truth-values. More specifically, the main idea underlying our approach is the use of algebras of truth-values, whose operators re...

متن کامل

Fibring Logics with Topos Semantics

The concept of fibring is extended to higher-order logics with arbitrary modalities and binding operators. A general completeness theorem is established for such logics including HOL and with the meta-theorem of deduction. As a corollary, completeness is shown to be preserved when fibring such rich logics. This result is extended to weaker logics in the cases where fibring preserves conservativ...

متن کامل

Preservation of Interpolation Features by Fibring

Fibring is a metalogical constructor that permits to combine different logics by operating on their deductive systems under certain natural restrictions, as for example that the two given logics are presented by deductive systems of the same type. Under such circumstances, fibring will produce a new deductive system by means of the free use of inference rules from both deductive systems, provid...

متن کامل

A Fibred Tableau Calculus for BDI Logics

In [12,16] we showed how to combine propositional BDI logics using Gabbay’s fibring methodology. In this paper we extend the above mentioned works by providing a tableau-based decision procedure for the combined/fibred logics. To achieve this end we first outline with an example two types of tableau systems, (graph & path), and discuss why both are inadequate in the case of fibring. Having done...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Log. Comput.

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2002